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Rice is one of the most important cereal crops feeding a large

segment of the world’s population. Inefficient utilization of

phosphate (Pi) fertilizer by the plant in rice production increases

cost and pollution. Developing cultivars with improved Pi use

efficiency is essential for the sustainability of agriculture. Pi

uptake, translocation and remobilization are regulated by

complex molecular mechanisms through the functions of Pi

transporters (PTs) and other downstream Pi Starvation Induced

(PSI) genes. Expressions of these PSI genes are regulated by

the Pi Starvation Response Regulator (OsPHR2)-mediated

transcriptional control and/or PHO2-mediated ubiquitination.

SPX-domain containing proteins and the type I H+-PPase AVP1

involved in the maintenance and utilization of the internal

phosphate. The potential application of posttranscriptional

regulation of PT1 through OsPHF1 for Pi efficiency is proposed.
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Introduction
Developing crop cultivars with increased yield and less

dependence on the heavy application of fertilizers is

essential for the sustainability of agriculture. Phosphorus

(P) is an essential macronutrient for plant growth and

development. Plants take up P exclusively in the form of

inorganic phosphate (Pi). The high chemical fixation rate,

slow diffusion and substantial fractions of organically

bound P of Pi render it one of the least available nutrients

for crop [1]. To obtain maximum crop yield, P fertilizer is

often over-applied, which led to accelerating soil degra-

dation and water eutrophication [2]. Rice is one of the
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most important cereal crops feeding a large segment of

the world’s population. Developing rice cultivars with

higher efficiency in P use is increasingly important for

sustainable food production.

Over the past decades, many scientific studies aimed at

elucidating the complex molecular mechanisms and cru-

cial regulators underlying Pi signaling and Pi homeostasis

in plants have been performed. In this article, we focus on

progress in understanding the molecular regulation of Pi

acquisition and homeostasis in the major cereal crop rice.

In particular, this review summarizes the recent progress

in determining the signal networks of PSI, the functions

and regulation of rice PT, and the roles of SPX domain-

containing proteins in Pi homeostasis. In addition, we

provide new data showing the application of Pi-transpor-

ter posttranslational regulation to improve tolerance to

low Pi stress in rice.

Phosphate signaling under the control of the
central transcription factor OsPHR2
The Arabidopsis Phosphate Starvation Response Regu-

lator 1 (PHR1) is a MYB transcription factor, playing a key

role in Pi starvation signaling by binding to a cis-element

of GNATATNC, named the PHR1 binding sequences

(P1BS) [3]. Genes downstream of PHR1 include genes

encoding the signal molecules AtIPS1/At4 [4,5], miRNAs

[6], SPXs [7,8��,9,10], biosynthetic genes of sulfolipids

and galactolipids [11], PTs [12–14] and purple acid phos-

phatases (PAPs) [15–17] (Figure 1a). In addition to P1BS,

there are other consensus sequences adjacent to P1BS

that have proved to be essential to the Pi starvation

response [18�,19].

OsPHR1 and OsPHR2 are homologous proteins of PHR1

in rice [20]. Overexpression of OsPHR2 in rice mimicked

the Pi starvation signal. It induced PSI gene expression

and resulted in the enhancement of Pi acquisition. The

PSI genes that are activated by the overexpression of

OsPHR2 include genes encoding the signaling molecules

OsIPS1/2, microRNA osa-miR399 and osa-miR827

[20,21,22�,23], and SPX1-3 and SPX5-6 [8��,9,10,22�];
PTs for Pi uptake and translocation; PAPs for releasing

Pi from organic P [20,24]; sulfoquinovosyldiacylglycerol 2

(SQD2) for recycling Pi from membrane phospholipids

[12–14] (Table 1 and Figure 1a). Analysis of the 2.0 kb

sequence upstream of the initiating ATG of the listed PSI

genes and a yeast one-hybridization assay showed that at

least one additional motif (Figure 1b), named as P1BS-

like, adjacent to the PIBS elements at a certain distance is
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(a) Regulation of phosphate starvation signal through the transcription factor, OsPHR2. Green arrows represent positive effects, whereas red lines

ending with a short bar indicate negative effects. The dotted red line indicates unknown mechanism. (b) Weblogo presentation of sequence of P1BS-

like motif.
required for OsPHR2 binding. The requirement for the

existence of P1BS and P1BS-like sequences in the pro-

moter region of PSI genes is consistent with the fact that

OsPHR2 acts as a heterodimer or homodimer.

As was initially shown in Arabidopsis [25–29], the expres-

sion of both osa-miR399 and its antagonists OsIPS1/2 are

induced by OsPHR2 overexpression, regardless of the

status of Pi supply. osa-miRNA399 targets an E2 ubiqui-

tin-conjugase, OsPHO2 [30]. OsIPS1/2 mimics the osa-

miR399 target to attenuate the suppressive effect of

miR399 on PHO2 mRNA. Overexpression of OsPHR2
and loss of function of OsPHO2 lead to excessive accumu-

lation of Pi in the shoot tissue [9,20,30].

A number of rice PTs have been shown to be induced by

Pi starvation [8��,13,20,31,32��,33]. While 9 out of the 13

rice PTs contain P1BS sequences in their promoter

region, only OsPT2/3/7/10/11 contains the adjacent

P1BS-like motif (Table 1). The physical binding of
Current Opinion in Plant Biology 2013, 16:205–212 
OsPHR2 to the promoter of the OsPT2 gene, which

encodes a low-affinity PT, has been shown [8��].
Whether the Pi starvation-induced PTs, that lack the

adjacent P1BS-like element, are regulated by the tran-

scription factor OsPHR2 in conjugation with other

protein factors or by other transcription factors needs

to be clarified.

The expression levels of 10 out of the 25 identified rice

PAP genes were upregulated by both phosphate depri-

vation or overexpression of the transcription factor

OsPHR2 [24]. In addition to the 10 PSI PAP genes in

the root, the promoters of OsPAP9a and OsPAP15 con-

tained P1BS and the adjacent P1BS-like elements (Table

1). It is not clear why the expression of the two PAP genes

does not respond to Pi starvation. In addition, OsPAP1d
and OsPAP10a have only P1BS element(s), not the adja-

cent P1BS-like element. Whether the induction of these

two genes by Pi starvation requires factors other than

OsPHR2 needs further analysis.
www.sciencedirect.com
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Table 1

Existence of the P1BS and P1BS-like motifs in promoter regions of rice PSI genes. The presence of P1BS and P1BS-like motifs was

analyzed in 2 kb upstream of ATG initiation site of each gene. P1BS sequence: GNATATNC; P1BS-like motif: see supporting data in

Figure1

Genes LOC number P1BS position P1BS-(adjacent P1BS-like) position

Signal genes

OsIPS1 AY568759 �483, �618 �483/(�471)

OsIPS2 AK240849 �154, �224 �154/(�142)

OsmiR827a MI0010490 �195 �195/(�208)

OsmiR399d MI0001056 �188, �263 �188/(�263)

OsmiR399j MI0001062 �156, �194 �156/(�194)

OsSPX1 Os06g40120 �136, �170 �136/(�170)

OsSPX2 Os02g10780 �147, �163 �147/(�163)

OsSPX3 Os10g25310 �208, �954 �208/(�216)

OsSPX4 Os03g61200 �196 None

OsSPX5 Os03g29250 �166, �1636 None

OsSPX6 Os07g42330 �148, �856, �1864 �148/(�138), �856/(�869), �1864/(�1853)

OsPTs

OsPT2 Os03g05640 �336 �336/(�357)

OsPT3 Os10g30770 �502, �797 �502/(�510)

OsPT5 Os04g10690 �257 None

OsPT8 Os10g30790 �1585, �1754, �2839 None

OsPT9 Os06g21920 �828 None

OsPT10 Os06g21950 879 (within intron) 879/(892)

OsPT11 Os01g46860 �219, �515, �1203 �1203/(�1212)

OsPT12 Os03g05610 �1693 None

OsPT13 Os04g10800 �527 None

OsSQD2 Os01g04920 �54, �936 �54/(�94)

PAPs

OsPAP1a Os03g11530 �273, �2496 �273/(�261)

OsPAP1d Os12g38750 �220 None

OsPAP3b Os10g02750 �113, �419, �2209 �419/(�406

OsPAP9a Os07g02090 �96, �2856 �96/(�145)

OsPAP9b Os01g58640 �366, �985, �1299, �1463 �999/(�985)

OsPAP10a Os01g56880 �218 None

OsPAP10c Os12g44020 �139, �516, �1829 �516/(�506), �1829/(�1817)

OsPAP15 Os03g63074 �504, �982, �1134, �1198 �504/(�485)

OsPAP20b Os12g05540 �573 �573/(�587)

OsPAP21b Os11g05400 �39 �39/(�51)

OsPAP23 Os08g17784 �107 �107/(�96)

SQDs

OsSQD2 Os01g04920 �54, �936 �54/(�94)
Phosphate signaling through PHO2-mediated
ubiquitination
As outlined in the last section, PHR1/OsPHR2 negatively

regulates the transcript level of PHO2 through miR399-

mediated RNA cleavage in Arabidopsis and rice [20,25–
29]. It is not surprising that some common genes could be

induced by both the activation of PHR1 and the mutation

of pho2. However, many of the downstream genes that are

antagonistically regulated by PHR1/OsPHR2 and PHO2
are PSI genes whose promoter region contains P1BS

elements that bind PHR1/OsPHR2. For instance, 21

out of 22 genes deregulated in the pho2 mutant were

regulated by PHR1, including SPX1, Pht1;4, the acid

phosphatase 5 (ACP5) and so on [27]. Consistent with the

Arabidopsis results, rice OsSPX1, OsPT2, OsPT8,
OsPAP10a and RNase were induced in OsPHR2 over-

expressors and the pho2 mutant [9,30]. Therefore, the

direct binding between the P1BS element (plus other
www.sciencedirect.com 
required motifs) and PHR1/OsPHR2 is significant but not

sufficient to explain the regulatory mechanism of PSI

gene expression (Figure 1). PHO2 negatively regulates a

number of PSI genes via an unknown mechanism. The

recent discovery of a PHO2-dependent PHO1 degra-

dation pathway sheds new light on our understanding

of how PHO2 mediates Pi uptake and translocation

[34��]. Further studies are thus required to identify

PHR1/OsPHR2 and PHO2 interacting proteins and

determine how they are co-regulated.

Roles of OsSPX domain proteins in phosphate
homeostasis
In plants, the proteins containing the SPX (named after

the yeast Syg1, Pho81, and the human XPR1) domain can

be divided into the SPX, SPX-EXS, SPX-MFS and SPX-

RING subfamilies on the basis of the presence of

additional domains in their protein structure. Proteins
Current Opinion in Plant Biology 2013, 16:205–212
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exclusively harboring the SPX domain are referred to as

SPX proteins. Except for OsSPX4, the rice SPX genes

were highly induced by Pi starvation at the transcription

level in roots and/or in shoots [8��,9–10]. The expression

of OsSPX1 can be induced by Pi starvation or the PHR-

PHO2 signal pathway, that is, the transcript level of

OsSPX1 is increased in OsPHR2 overexpressors or

OsPHO2 mutants (ospho2) [9]. However, the role of

OsSPX1 in Pi accumulation is opposite of that of

OsPHR2. While overexpression of OsPHR2 or knockout

of OsPHO2 resulted in toxicity due to the accumulation of

Pi [9,20], knockdown of OsSPX1 increased the expression

of some PSI genes, including the Pi transporters OsPT2

and OsPT8 and consequently increased Pi accumulation

in the shoots [9]. In contrast, overexpression of OsSPX1
reduced the shoot Pi concentration of the OsPHR2 over-

expressor to a level similar to that of the wild-type plant

[8��,9]. Thus, OsSPX1 is a Pi-starvation-induced negative

regulator. OsSPX1-6 were shown to localize in different

organelles [10], implying that the six OsSPX proteins

have different roles.

The Arabidopsis Pi-deficient mutant pho1 was the first

Pi-deficient mutant identified [35]. In addition to an

SPX domain at its N-terminal region, the PHO1 protein

contains a C-terminal EXS domain (named after the

yeast ERD1, the human XPR1, and the yeast SYG1)

[36,37]. PHO1 is involved in the xylem loading of Pi in

roots [36]. Interestingly, underexpression of AtPHO1
resulted in a low Pi concentration in shoots to a low

level similar to that of the pho1 mutant [36], but it had

no growth defect [38��]. Expression of the PHO1 rice

ortholog, OsPHO1;2, in the pho1 null mutant also results

in plants that maintain normal growth and suppression

of the Pi-deficiency response, despite the low shoot Pi

[38��]. The growth hallmarks of the pho1 mutant are not

a direct consequence of Pi deficiency but are likely to be

a result of extensive gene expression reprogramming

triggered by Pi deficiency. Thus, the strategy of devel-

oping crop cultivars with enhanced efficiency of Pi use

may need to consider increasing the Pi uptake ability of

plants in lower Pi supply conditions while preventing

overreaction to Pi starvation at the gene expression

level.

Three members of rice SPX proteins possess an MFS

(Major Facilitator Superfamily) domain in their C-term-

inal region [22�,23]. The mRNA levels of OsSPX-MFS1
and OsSPX-MFS3 were suppressed by Pi starvation,

whereas that of OsSPX-MFS2 was induced by Pi

deficiency. OsSPX-MFS1 and OsSPX-MFS2 are direct

targets of a Pi-starvation-induced osa-miR827 [22�,23].

Overexpression of osa-miR827 or mutant of OsSPX-

MFS1 increases the Pi concentration in the leaves by

reducing Pi remobilization from old to young leaves [22�].
Expression of the OsSPX-MFS1 gene in the yeast strain

PAM2, which lacks the two high-affinity Pi uptake
Current Opinion in Plant Biology 2013, 16:205–212 
transporters, restored its growth, suggesting that

OsSPX-MFS1 is likely function as a Pi transporter.

SPX-domain-containing proteins has a Really Interesting

New Gene (RING) domain in the C terminal region was

named as SPX-RING protein [39,40]. The Arabidopsis

SPX-RING protein NLA (Nitrogen Limitation Adap-

tation) was shown to be involved in phosphate homeo-

stasis [41�]. Whether rice SPX-RING genes play similar

roles in Pi homeostasis should be investigated.

Rice SPX-domain-containing proteins are involved in Pi

xylem loading (OsPHO1;2), leaf Pi reallocation (OsSPX1,

OsSPX-MFS1), the negative regulation of the expression

of downstream PSI genes (OsSPX1) and possibly the

movement of Pi to and from the vacuole (OsSPX-MFSs).

Although the mechanism through which SPX-domain

proteins regulate Pi signaling and responses is not yet

fully understood, the available evidence from yeast and

Arabidopsis suggests that SPX proteins may function by

interacting with other proteins via the SPX domain

[34��,39,42]. Recently, it was reported that the PHO2

protein, an important mediator of Pi starvation signaling,

can specifically interact with the SPX domain of PHO1

and mediate the degradation of PHO1 protein [34��].
Further identification of proteins that physically interact

with SPX-domain containing proteins will uncover the

molecular networks that are affected by SPX-domain

proteins.

Function and regulation of rice Pi transporters
On the basis of amino acid sequence similarity with the

yeast PT, complementation test of yeast mutants lacking

endogenous high affinity PTs, Xenopus oocyte or plant

suspension cell expression system, 9 and 13 PTs in the

Pht1 family were identified in the Arabidopsis and rice

genomes and named as AtPT1-9 and OsPT1-13, respect-

ively [12,13]. Most of them contain P1BS/P1BS-like cis-

elements in their promoter regions (Table 1) and were

expressed either exclusively or predominately in the

roots. The transcript levels of these PT genes were

strongly induced by a low Pi supply or by inoculation

with arbuscular mycorrhizal fungi (AMF) [12,13,31,33],

consistent with their role in Pi uptake from soil by roots or

AMF. In Arabidopsis, 3 of the 9 PTs have been function-

ally characterized using T-DNA insertion mutants.

AtPT1 and AtPT4 were shown to be responsible for Pi

acquisition [43,44]. A recent report showed that AtPT5

may mobilize Pi between the source and sink tissues

[45�].

In the rice genome, OsPT1/2/6/8 have been functionally

analyzed in detail [46–48]. OsPT2 and OsPT6 were

predominately expressed in the roots in response to Pi

deprivation, but expression in the leaves also increased

upon Pi starvation, especially for OsPT6 [48]. OsPT2 is a

low Pi affinity H+/Pi co-transporter, mediating Pi uptake
www.sciencedirect.com
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in the millimolar (mM) range [48]. OsPT2 was respon-

sible for most of the excessive accumulation of Pi in the

shoots of OsPHR2 overexpression lines under Pi suffi-

cient conditions [8��]. Knockdown of OsPT6 decreased

both direct Pi uptake from the culture medium and Pi

translocation from roots to shoots [48]. Its diverse

expression patterns in roots and shoots and the esti-

mated kinetics, with an apparent mean Km for Pi of

97 mM, suggest that OsPT6 in rice might have similar

functions to Arabidopsis AtPT1 and AtPT4, that plays a

broad role in Pi uptake, translocation and internal trans-

port throughout the plant to enable adaptation to the

changing P status of the soil [43,44]. The root expression

of OsPT8 was upregulated by Pi deprivation, while its

shoot expression was not affected by Pi supply status

[47]. The apparent mean Km value for Pi transport of

OsPT8 was 23 mM in the yeast and 27 mM in the oocyte

system. Knock down of OsPT8 caused large decreases in

root and shoot biomass and total Pi uptake at 15 mM Pi

[47]. These data support that OsPT8 acts in planta as a

high affinity PT in rice. In contrast, overexpression of

OsPT8 resulted in excessive Pi in both roots and shoots.

Moreover, OsPT8 functions in Pi translocation from

vegetative organs to reproductive organs in rice [47].

OsPT1 is expressed abundantly in roots and leaves,

irrespective  of the Pi supply, suggesting that OsPT1

is a constitutive PT in rice [46]. OsPT1 has a much

lower Pi affinity (Km of 177 mM) than its homolog

OsPT8 [46]. Overexpression of OsPT1 could enhance

Pi transportation from roots to shoots and P accumulation in

young leaves even at a relatively late developmental stage

[46].

Maintaining sufficient Pi in the aerial part of the plant

depends on not only root Pi acquisition from the exter-

nal environments but also the transfer of Pi from the

roots to the shoots via the xylem and redistribution

inside the plant via the phloem. The PHO1 protein,

primarily expressed in the root vascular cylinder, is

known to mediate Pi efflux to load Pi into the root

xylem in Arabidopsis [36,49]. In rice, it has been shown

that OsPHO1;2 plays an important role in transferring Pi

from roots to shoots [50]. However, it is not clear

whether and which Pht1 members are directly respon-

sible for Pi loading, unloading or retrieval in the vascular

tissue.

Although there are partial overlaps in the spatial expres-

sion patterns of some OsPTs, they have differential

involvement in the OsPHR2-regulated or OsPHO2-

regulated Pi pathways. Overexpression of OsPHR2 upre-

gulated the expression of Pi-starvation enhanced OsPTs

including OsPT2, OsPT6 and OsPT8, but not OsPT1
[46,47]. In contrast, OsPT1, but not OsPT2 and OsPT8,

was strongly upregulated in ospho2 mutant leaves. Their

interaction with OsPHR2 or OsPHO2 signaling pathways

needs to be further characterized.
www.sciencedirect.com 
Posttranslational regulation of Pi transporters
and its application in the improvement of Pi
uptake ability in rice
The activity of Pi-transporters can be regulated posttran-

slationally. The trafficking of the Arabidopsis high-affi-

nity PT, PHT1 from the endoplasmic reticulum (ER) to

plasma membrane requires the PT Traffic Facilitator

(PHF1) [51]. Recently, it was shown that PHF1 can

facilitate the exit of PHT1 and other PHT1 family

members from the ER [52�]. It has been hypothesized

that most posttranslational regulatory events identified in

Arabidopsis are conserved among plant species [52�].
Isolating and performing a functional analysis of

OsPHF1, a homolog of PHF1, confirmed this hypothesis

[32��].

Because the PHF1-mediated posttranslational regulation

of Pi-transporters does not change the cell-specific or

tissue-specific expression patterns of Pi-transporter

genes, increasing expression of PHF1 may enhance func-

tion of PHT1 to improve Pi uptake ability. In Arabidop-

sis, overexpression of AtPHF1 cannot significantly

increase the Pi-uptake ability, unless under N-deficient

conditions [52�]. In contrast, overexpression of OsPHF1 in

rice increases the Pi-uptake ability and results in

enhanced tolerance to low Pi stress [32��]. The different

function of PHF1 in the regulation of Pi uptake may be

attributed to the different growth ecosystems of Arabi-

dopsis and rice (upland versus flooding) or the different

physiological systems of monocot and dicot plants. Over-

expression of OsPHF1 in 9311, an indica restorer line of

Super Hybrid Rice, led to enhanced tolerance to low Pi

stress in transgenic rice in a large-scale field test. Under

low Pi soil environment, grain yield per plant of the two

transgenic lines 9311/PHF1(Ov1) and 9311/PHF1(Ov2)

were significantly higher than that of the wild type

counterpart (Figure 2). The field experiment data

demonstrated that posttranscriptional regulation of Pi

transporters can be used as a novel strategy to improve

Pi uptake ability.

Increase phosphate use efficiency in rice
Generation of plants with enhanced plant Pi use effi-

ciency (PUE) can be achieved by a coordinated increase

of Pi acquisition, translocation and internal utilization

through either traditional breeding or genetic engineer-

ing. Recent studies showed that nutrient acquisition and

partitioning depend on the H+ gradients, which is

regulated by the plasma membrane H+-ATPases [53–
55]. Transgenic rice plants that overexpressing the

gain-of-function mutant version of the Arabidopsis H+-

PPase (AVP1D) maintained shoot growth under Pi-

deficient conditions while the WT controls grew poorly.

Overexpression of AVP1D enhanced P extraction capacity

in transgenic rice and other crops under both P-deficient

and P-sufficient conditions [53–54]. Rice H+-PPases was

shown to concomitantly be upregulated by OsPTF1, a
Current Opinion in Plant Biology 2013, 16:205–212



210 Genome studies and molecular genetics

Figure 2
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Growth performance and yield of OsPHF1-overexpressed plants under low phosphate soil. The indica line 9311 was used for transformation. (a) Field

performance. (b) Grain yield and numbers of effective panicle per plant: (1) wild-type; (2) PHF1(Ov-1); (3) PHF1(Ov-2). Data are means � SD (n = 100).

**Significant difference (P < 0.01) from the wild type (t-test). (c) Southern blot analysis of the two independent transgenic lines overexpressing OsPHF1

(1, wildtype; 2, PHF1(Ov-1); 3, PHF1(Ov-2)). (d) RT-PCR analysis of the expression levels of two transgenic lines overexpressing OsPHF1, using the

same primers as in a previous report [32��]. (e) Pi-uptake ability analysis of the two transgenic lines using 33P-labled Pi. Two weeks old plants were

supplied with 100 mM 33P-labeled Pi for 24 hours. Data are means � SD (n = 3). Low P soil: Olsen P 3.5 ppm and pH: 7.2. Nitrogen and potassium

were applied before planting at usual levels (450 kg urea/ha; 300 kg KCl/ha). No phosphate fertilizer was applied since 2009. The plants were

transplanted with 25 cm � 25 cm arranged in randomized plots. The experiment was conducted in the Agricultural Experiment Station of Zhejiang

University, Changxing, Zhejiang in 2012.
bHLH transcription factor enhancing rice tolerance to Pi

starvation [55]. Whether H+-PPases is under control

OsPTF1 or other transcription factors related with

PUE is to be elucidated.

Prospects
While genetic manipulation of key genes in the compli-

cated regulation system involved in a plant’s responses to

Pi starvation offers solutions to improve rice Pi efficiency,

identification and tracking of genetic variation is another

effective approach for novel gene and allele discovery.

Recently, PSTOL1 (phosphorus starvation tolerance 1)

gene, encoding for a Pup1-specific protein kinase, was

found to be responsible for the natural variation in
Current Opinion in Plant Biology 2013, 16:205–212 
phosphorus starvation tolerance between the intolerant

modern varieties and tolerant genotype Kasalath [56].

Overexpression of PSTOL1 in rice varieties that naturally

do not have the gene significantly enhanced grain yield in

phosphorus deficient soil by promoting early root growth

and Pi acquisition [56]. A single amino substitution of Ser-

514 with Ala in Arabidopsis PHT1 can change the status

of phosphorylation site regulated by PHF1, and signifi-

cantly increased the of Pi-transporter activity [52�]. The

advances in new platform technologies of genome

sequences for rice genotypes together with field screen-

ing focusing on the key genes for Pi uptake and utilization

may promote the generation of crops with enhanced Pi

use efficiency.
www.sciencedirect.com



Phosphate signaling and homeostasis in rice Wu et al. 211
References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

�� of outstanding interest

1. Vance CP, Uhde-Stone C, Allan DL: Phosphorus acquisition and
use: critical adaptations by plants for securing a
nonrenewable resource. New Phytol 2003, 157:423-447.

2. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP,
Havens KE, Lancelot C, Likens GE: Ecology. Controlling
eutrophication: nitrogen and phosphorus. Science 2009,
323:1014-1015.

3. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-
Ares J: A conserved MYB transcription factor involved in
phosphate starvation signaling both in vascular plants and in
unicellular algae. Genes Dev 2001, 15:2122-2133.

4. Burleigh SH, Harrison MJ: The down-regulation of Mt4-like
genes by phosphate fertilization occurs systemically and
involves phosphate translocation to the shoots. Plant Physiol
1999, 119:241-248.

5. Liu CM, Muchhal US, Raghothama KG: Differential expression of
TPS11, a phosphate starvation-induced gene in tomato. Plant
Mol Biol 1997, 33:867-874.

6. Kuo HF, Chiou TJ: The role of microRNAs in phosphorus
deficiecny signaling. Plant Physiol 2011, 156:1016-1024.

7. Duan K, Yi K, Dang L, Huang H, Wu W, Wu P: Characterization of
a sub-family of Arabidopsis genes with the SPX domain
reveals their diverse functions in plant tolerance to
phosphorus starvation. Plant J 2008, 54:965-975.

8.
��

Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P:
OsSPX1 suppresses the function of OsPHR2 in the regulation
of expression of OsPT2 and phosphate homeostasis in shoots
of rice. Plant J 2010, 62:508-517.

This work thoroughly studied the functions of the key players OsPHR2,
OsSPX1, OsPHO2, and OsPT2, on the rice Pi-signaling. It provided
evidence to demonstrate that OsSPX1 acts as a negative regulator that
could suppress the OsPHR2-mediated PSI induction, and offsets the
effect of OsPHR2 overexpressing on the Pi accumulation.

9. Wang C, Ying S, Huang H, Li K, Wu P, Shou H: Involvement of
OsSPX1 in phosphate homeostasis in rice. Plant J 2009,
57:895-904.

10. Wang Z, Hu H, Huang H, Duan K, Wu Z, Wu P: Regulation of
OsSPX1 and OsSPX3 on expression of OsSPX domain genes
and Pi-starvation signaling in rice. J Integr Plant Biol 2009,
51:663-674.

11. Yu B, Xu C, Benning C: Arabidopsis disrupted in SQD2 encoding
sulfolipid synthase is impaired in phosphate-limited growth.
Proc Natl Acad Sci U S A 2002, 99:5732-5737.

12. Mudge SR, Rae AL, Diatloff E, Smith FW: Expression analysis
suggests novel roles for members of the Pht1 family of
phosphate transporters in Arabidopsis. Plant J 2002,
31:341-353.

13. Paszkowski U, Kroken S, Roux C, Briggs SP: Rice phosphate
transporters include an evolutionarily divergent gene
specifically activated in arbuscular mycorrhizal symbiosis.
Proc Natl Acad Sci U S A 2002, 99:13324-13329.

14. Liu F, Chang XJ, Ye Y, Xie WB, Wu P, Lian XM: Expression profile
analysis of the phosphate transporter gene family in rice. Mol
Plant 2011, 4:1-18.

15. Bozzo GG, Kashchandra GR, William CP: Purification and
characterization of two secreted purple acid phosphatase
isozymes from phosphate-starved tomato (Lycopersicon
esculentum) cell cultures. Eur J Biochem 2002,
269:6278-6286.

16. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A,
Paz-Ares J: The transcriptional control of plant esponses to
phosphate limitation. J Exp Bot 2004, 55:285-293.
www.sciencedirect.com 
17. Lu K, Chai YR, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu XF, Li JN:
Cloning and characterization of phosphorus starvation
inducible Brassica napus PURPLE ACID PHOSPHATASE12
gene family, and imprinting of a recently evolved MITE-
minisatellite twin structure. Theor Appl Genet 2008,
117:963-975.

18.
�

Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J,
Solano R, Leyva A, Paz-Ares J: A central regulatory system
largely controls transcriptional activation and repression
responses to phosphate starvation in Arabidopsis. PLoS Genet
2010, 6:e1001102.

This work provides evidence that PHR1 and its homologue PHL1 could
bind to the same DNA sequence (P1BS and B motif) and together controls
most Pi response genes under Pi deficient condition. It also shows that
adjacent sequence of P1BS is important for the PHR1 or PHL1 direct
binding.

19. Oropeza-Aburto A, Cruz-Ramirez A, Acevedo-Hernandez GJ,
Perez-Torres CA, Caballero-Perez J, Herrera-Estrella L:
Functional analysis of the Arabidopsis PLDZ2 promoter
reveals an evolutionarily conserved low-Pi-responsive
transcriptional enhancer element. J Exp Bot 2012,
63:2189-2202.

20. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P: OsPHR2
is involved in phosphate-starvation signaling and excessive
phosphate accumulation in shoots of plants. Plant Physiol
2008, 146:1673-1686.

21. Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK:
Regulation of the expression of OsIPS1 and OsIPS2 in rice via
systemic and local Pi signalling and hormones. Plant Cell
Environ 2005, 28:353-364.

22.
�

Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J,
Shou H: Functional characterization of the rice SPX-MFS
family reveals a key role of OsSPX-MFS1 in controlling
phosphate homeostasis in leaves. New Phytol 2012,
196:139-148.

The study showed that the mutation of SPX-MFS1 affected the Pi
remobilization from old leaves to young leaves. Using yeast complemen-
tation test, the study provides first evidence that the SPX-MFS domain
protein can transport Pi in yeast.

23. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM,
Verdeil JL, Breitler JC, Perin C, Ko SS et al.: Complex regulation
of two target genes encoding SPX-MFS proteins by rice
miR827 in response to phosphate starvation. Plant Cell Physiol
2010, 51:2119-2131.

24. Zhang Q, Wang C, Tian J, Li K, Shou H: Identification of rice
purple acid phosphatases related to phosphate starvation
signalling. Plant Biol 2011, 13:7-15.

25. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-
Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J: Target
mimicry provides a new mechanism for regulation of
microRNA activity. Nat Genet 2007, 39:1033-1037.

26. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ: pho2, a
phosphate overaccumulator, is caused by a nonsense
mutation in a microRNA399 target gene. Plant Physiol 2006,
141:1000-1011.

27. Bari R, Datt Pant B, Stitt M, Scheible WR: PHO2, microRNA399,
and PHR1 define a phosphate-signaling pathway in plants.
Plant Physiol 2006, 141:988-999.

28. Fujii H, Chiou TJ, Lin SJ, Aung K, Zhu JK: A miRNA involved in
phosphate-starvation response in Arabidopsis. Curr Biol 2005,
15:2038-2043.

29. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL: Regulation of
phosphate homeostasis by microRNA in Arabidopsis. Plant
Cell 2006, 18:412-421.

30. Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C: LEAF
TIP NECROSIS1 plays a pivotal role in the regulation of
multiple phosphate starvation responses in rice. Plant Physiol
2011, 156:1101-1115.

31. Bucher M: Functional biology of plant phosphate uptake
at root and mycorrhiza interfaces. New Phytol 2007,
173:11-26.
Current Opinion in Plant Biology 2013, 16:205–212



212 Genome studies and molecular genetics
32.
��

Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P:
OsPHF1 regulates the plasma membrane localization of low-
and high-affinity Pi transporters and determines Pi uptake and
translocation in rice. Plant Physiol 2011:269-278.

In this study, phosphate transporter traffic facilitator 1 is cloned and
functional analyzed in rice. OsPHF1 regulates the proper localization of
both high and low phosphate transporters. Overexpression of OsPHF1
may provide a new strategy to improve phsophate uptake in plants.

33. Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A,
Nakanishi TM, Thibaud MC: Phosphate import in plants: focus
on the PHT1 transporters. Front Plant Sci 2011, 2:83 http://
dx.doi.org/10.3389/fpls.2011.00083.

34.
��

Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW,
Chiou TJ: PHO2-dependent degradation of PHO1 modulates
phosphate homeostasis in Arabidopsis. Plant Cell 2012,
24:2168-2183.

The first report PHO2 interacting protein was identified in the study. PHO2
physically interacts with PHO1 in the endomembranes and mediates
degradation of PHO1. Loss function of PHO1 could suppress the Pi-
overaccumulation phenotype in pho2. Furthermore, the study also
showed that under Pi sufficient conditions, PHO1 protein is degradated,
which requires PHO2.

35. Poirier Y, Thoma S, Somerville C, Schiefelbein J: Mutant of
Arabidopsis deficient in xylem loading of phosphate. Plant
Physiol 1991, 97:1087-1093.

36. Hamburger D, Rezzonico E, MacDonald-Comber Petetot J,
Somerville C, Poirier Y: Identification and characterization of
the Arabidopsis PHO1 gene involved in phosphate loading to
the xylem. Plant Cell 2002, 14:889-902.

37. Wang Y, Ribot C, Rezzonico E, Poirier Y: Structure and
expression profile of the Arabidopsis PHO1 gene family
indicates a broad role in inorganic phosphate homeostasis.
Plant Physiol 2004, 135:400-411.

38.
��

Rouached H, Stefanovic A, Secco D, Bulak Arpat A, Gout E,
Bligny R, Poirier Y: Uncoupling phosphate deficiency from its
major effects on growth and transcriptome via PHO1
expression in Arabidopsis. Plant J 2011, 65:557-570.

This study for first time demonstrated that the reduced shoot growth was
not the direct consequence of Pi deficiency, but the overreaction of gene
expression reprogramming triggered by Pi deficiency. This results pro-
vide a putative strategy for genetic engineering of plants with enhanced Pi
use efficiency, that is, by suppression of the Pi-starvation induced gene
expression changes, the negative effect of low Pi supply on plant growth
could be allievated.

39. Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P,
Shou H, Whelan J: The emerging importance of the SPX
domain-containing proteins in phosphate homeostasis. New
Phytol 2012, 193:842-851.

40. Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ: A mutation in
NLA, which encodes a RING-type ubiquitin ligase, disrupts the
adaptability of Arabidopsis to nitrogen limitation. Plant J 2007,
50:320-337.

41.
�

Kant S, Peng M, Rothstein SJ: Genetic regulation by NLA and
microRNA827 for maintaining nitrate-dependent phosphate
homeostasis in Arabidopsis. PLoS Genet 2011, 7:e1002021.

The study showed that the phosphate starvation induced miR827 reg-
ultes its downstream gene NLA, encoding a SPX and RING domain
protein. Moreover, the results provide evidence that nitrate negatively
regulted phosphate uptake.

42. Hurlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC,
Freimoser FM: The SPX domain of the yeast low-affinity
phosphate transporter Pho90 regulates transport activity.
EMBO Rep 2009, 10:1003-1008.

43. Shin H, Shin HS, Dewbre GR, Harrison MJ: Phosphate transport
in Arabidopsis: Pht1;1 and Pht1;4 play a major role in
phosphate acquisition from both low- and high-phosphate
environments. Plant J 2004, 39:629-642.
Current Opinion in Plant Biology 2013, 16:205–212 
44. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L:
Transcriptional regulation and functional properties of
Arabidopsis Pht1;4, a high affinity transporter contributing
greatly to phosphate uptake in phosphate deprived plants.
Plant Mol Biol 2004, 55:727-741.

45.
�

Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG,
Smith AP: Arabidopsis Pht1;5 mobilizes phosphate between
source and sink organs and influences the interaction
between phosphate homeostasis and ethylene signaling. Plant
Physiol 2011, 156:1149-1163.

Though phosphate transporters have be predicted to relocalize phosphate
in plants, this study provide direct evidencs that Pht1;5 meidiate phosphate
mobilization from source and sink organs in Arabidopsis. Moreover, the
results demostrated an ethylene signaling involved the process.

46. Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G: A
constitutive expressed phosphate transporter, OsPht1;1,
modulates phosphate uptake and translocation in phosphate-
replete rice. Plant Physiol 2012, 159:1571-1581.

47. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G: The
phosphate transporter gene OsPht1;8 is involved in phosphate
homeostasis in rice. Plant Physiol 2011, 156:1164-1175.

48. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P,
Miller AJ, Xu G: Two rice phosphate transporters, OsPht1;2 and
OsPht1;6, have different functions and kinetic properties in
uptake and translocation. Plant J 2009, 57:798-809.

49. Stefanovic A, Bulak Arpat A, Bligny R, Gout E, Vidoudez C,
Bensimon M, Poirier Y: Overexpression of PHO1 in Arabidopsis
leaves reveals its role in mediating phosphate efflux. Plant J
2011, 66:689-699.

50. Secco D, Baumann A, Poirier Y: Characterization of the rice
PHO1 gene family reveals a key role for OsPHO1;2 in
phosphate homeostasis and the evolution of a distinct clade in
dicotyledons. Plant Physiol 2010, 152:1693-1704.

51. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J: PHOSPHATE
TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific
SEC12-related protein that enables the endoplasmic reticulum
exit of a high-affinity phosphate transporter in Arabidopsis.
Plant Cell 2005, 17:3500-3512.

52.
�

Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M,
Gonzalez E, Paz-Ares J, Nussaume L: Arabidopsis thaliana high-
affinity phosphate transporters exhibit multiple levels of
posttranslational regulation. Plant Cell 2011, 23:1523-1535.

The study showed that the expression of phosphate transporter PHT1
family was regulated not only transcriptionally, but also posttranslation-
ally. The translationally regulation of PHT1 family includes PT Traffic
Facilitator (PHF1) to facilitate PHT1 transit through the ER, phosphoryla-
tion specific phosphorylation at the C terminus of PHT1 impairing PHT1
export from the ER, and specific degradation of plasma membrane PHT1
in the presence of phosphate.

53. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart L,
Murphy A, Gaxiola R: Enhanced phosphorus nutrition in
monocots and dicots overexpressing a phosphorus-
responsive type I H+-pyrophosphatase. Plant Biotechnol J 2007,
5:735-745.

54. Gaxiola RA, Edwards M, Elser JJ: A transgenic approach to
enhance phosphorus use efficiency in crops as part of a
comprehensive strategy for sustainable agriculture.
Chemosphere 2011, 84:840-845.

55. Gaxiola RA, Sanchez CA, Paez-Valencia J, Ayre BG, Elser JJ:
Genetic manipulation of a ‘‘Vacuolar’’ H+-PPase: from salt
tolerance to yield enhancement under phosphorus-deficient
soils. Plant Physiol 2012, 159:3-11.

56. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S,
Dalid, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M,
Heuer S: The protein kinase Pstol1 from traditional rice confers
tolerance of phosphorus deficiency. Nature 2012, 488:535-539.
www.sciencedirect.com

http://dx.doi.org/10.3389/fpls.2011.00083
http://dx.doi.org/10.3389/fpls.2011.00083

	Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis
	Introduction
	Phosphate signaling under the control of the central transcription factor OsPHR2
	Phosphate signaling through PHO2-mediated ubiquitination
	Roles of OsSPX domain proteins in phosphate homeostasis
	Function and regulation of rice Pi transporters
	Posttranslational regulation of Pi transporters and its application in the improvement of Pi uptake ability in rice
	Increase phosphate use efficiency in rice
	Prospects
	References and recommended reading


