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Abstract

Background: Under saline conditions, plant growth is depressed via osmotic stress and salt can accumulate in
leaves leading to further depression of growth due to reduced photosynthesis and gas exchange. Aquaporins are
proposed to have a major role in growth of plants via their impact on root water uptake and leaf gas exchange. In
this study, soybean plasma membrane intrinsic protein 1;6 (GmPIP1;6) was constitutively overexpressed to evaluate
the function of GmPIP1;6 in growth regulation and salt tolerance in soybean.

Results: GmPIP1;6 is highly expressed in roots as well as reproductive tissues and the protein targeted to the
plasma membrane in onion epidermis. Treatment with 100 mM NaCl resulted in reduced expression initially, then
after 3 days the expression was increased in root and leaves. The effects of constitutive overexpression of GmPIP1;6
in soybean was examined under normal and salt stress conditions. Overexpression in 2 independent lines resulted
in enhanced leaf gas exchange, but not growth under normal conditions compared to wild type (WT). With 100
mM NaCl, net assimilation was much higher in the GmPIP1;6-Oe and growth was enhanced relative to WT.
GmPIP1;6-Oe plants did not have higher root hydraulic conductance (Lo) under normal conditions, but were able to
maintain Lo under saline conditions compared to WT which decreased Lo. GmPIP1;6-Oe lines grown in the field had
increased yield resulting mainly from increased seed size.

Conclusions: The general impact of overexpression of GmPIP1;6 suggests that it may be a multifunctional
aquaporin involved in root water transport, photosynthesis and seed loading. GmPIP1;6 is a valuable gene for
genetic engineering to improve soybean yield and salt tolerance.
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Background
A significant proportion of cultivated land is salt affected
representing about 2% of dry-land and 20% of irrigated
agriculture (FAO Land and Plant Nutrition Management
service, http://www.fao.org/nr/aboutnr/nrl/en/). Soil sal-
inity arises from natural or human-induced processes
that inhibits plant growth via osmotically induced water
deficit and/or ion toxicity if excessive sodium (Na+) and
chloride (Cl−) accumulate in the shoot via transpiration
[1]. Osmotic stress reduces the ability of the plant to
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extract water from the soil and growth will reduce rap-
idly and significantly as salt concentration around the
roots increases past a threshold level. Ion toxicity occurs
when salt (Na+ and Cl− ) gains entry via the transpir-
ation stream and accumulates in the shoot to toxic con-
centrations resulting in injury to cells and causing
further reductions in growth [1,2]. Salt tolerance/sensi-
tivity is indicated by the relative degree of biomass re-
duction in saline soil compared to plants in a non-saline
soil, over an extended period of time [3]. Clearly water
flow is linked to both types of stresses induced by salin-
ity, yet the role of water transport in plant salt tolerance
is not yet clearly defined.
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Plants have evolved three distinct mechanisms of salinity
tolerance including osmotic adjustment to allow turgor to
be maintained, Na+ and Cl− exclusion from leaf blades, and
compartmentalization of Na+ and Cl− at cellular or intracel-
lular sites [1]. Numerous transporters have been identified
as likely to be involved in Na+ and Cl− exclusion and com-
partmentation [1,2,4-7], but the proteins that transport
water across membranes, the aquaporins, are not consid-
ered to be directly involved in these processes, though
indirect effects could occur through their impact on osmot-
ically driven water flow and pathways for water and solute
flow in roots and leaves [8].
The radial flow of water from soil solution toward

the root xylem encounters a relatively high resistance
compared to subsequent axial flow in the xylem to the
shoot. The radial flow pathway in the root consists of the
apoplastic pathway along the intracellular spaces and the
cell-to-cell pathway, in which water moves through plasmo-
desmata or across membranes [9]. Apoplastic water flow
can be blocked by Casparian bands and suberin lamellae at
key cellular barriers such as the endo and exodermis
[10,11] where water transport across membranes occurs.
Depending on the plant species and conditions, as well as
the position along the root, there are variable contributions
of the apoplast pathway compared to the cell-to-cell path-
way [8]. The conductance of the cell-to-cell pathway can be
largely determined by the activity of aquaporins (AQPs)
[12]. AQPs are suggested to play a key role in plant water
balance and water use efficiency [8,13-17].
Aquaporins are members of the major intrinsic protein

(MIP) family, which in plants are divided into five sub-
families that include the plasma membrane intrinsic pro-
teins (PIPs). These are considered as the main water
transport pathway across plasma membranes in root and
leaf tissues that play important roles in plant water rela-
tions [8,16-19]. According to the N terminal length of
the proteins, the PIPs are further divided into two sub-
classes (PIP1 and PIP2). PIP1s require co-expression of
PIP2s to show high water permeability in Xenopus laevis
oocytes [20-27]. PIP1s and PIP2s interact affecting tar-
geting to the plasma membrane [20,21] and forming
hetero-tetramers of variable stoichiometry that appears
to affect their transport efficiency [27]. Plant genomes
have variable numbers of aquaporin genes, ranging from
35 in Arabidopsis thaliana [28], 33 in Oryza sativa [29]
and 66 in soybean, including 22 PIPs [30]. Compared
with other species, little is known about the function of
AQP genes in soybean.
Aquaporins are clearly involved in water transport in

roots and leaves [8] and have been linked to water uptake
required for cell expansion [18,26,31-35]. Water is the car-
rier of Na+ and Cl− in the transpiration stream contributing
to shoot ion toxicity, and in salinity-induced osmotic stress,
free energy gradients need to be developed to drive water
diffusion to the sites of cell expansion. In this context aqua-
porins could affect the root’s ion selectivity by determining
the proportion of water that flows via membrane pathways
relative to the apoplast, while in osmotic stress, they could
allow continued water supply under diminished osmotic
and pressure gradients by increasing membrane hydraulic
conductivity.
Abiotic stresses such as salt, drought and cold influence

the water balance of plants and the expression of AQP
genes [36]. Overexpression of several AQP genes in plants
confers abiotic stress resistance. Overexpressing NtAQP1 in
tobacco increased photosynthetic rate, water use efficiency
and yield under salt stress [17]. Overexpression of several
wheat AQPs, including TaNIP, TaAQP8 and TaAQP7 genes
in Arabidopsis or tobacco also increased salt tolerance or
drought tolerance of the transgenic plants [37-39]. Recently,
overexpression a MusaPIP1;2 in banana displayed high tol-
erance to multiple abiotic stresses including salt, cold and
drought [40].
Soybean is a major source of protein and oil for

humans and animals, yet relatively mild salt stress sig-
nificantly reduces soybean growth, nodulation, seed
quality and yield [41]. Recently it was found that the ex-
pression of GmPIP1;6 in roots correlated with rapid and
longer term changes in root Lo in response to shoot
treatments and appeared to be more concentrated in
stellar tissue [42]. These results indicated that GmPIP1;6
may be important in the control of root water transport
particularly in response to shoot signals. In this study,
GmPIP1;6 was cloned and functionally characterized.
Overexpression of GmPIP1;6 significantly increased salt
tolerance of soybean by improving root Lo and Na+

exclusion.

Results
Subcellular localization of GmPIP1;6
In soybean, GmPIP1;6 was proposed to be one of the major
water transporter genes in roots [42]. The full-length cDNA
of GmPIP1;6 (Phytozome No. Gm08g01860.1) was ampli-
fied from soybean roots cultivar Williams 82 by PCR. The
cDNA of GmPIP1;6 is comprised of 1128 bp with an 870
bp open reading frame. The GmPIP1;6 belongs to the PIP1
subgroup and has an orthologous gene, GmPIP1;5, in the
soybean genome (Additional file 1: Figure S1). GmPIP1;6
protein contains the characteristic motifs of PIPs and is pre-
dicted to be localized on the plasma membrane. To verify
the subcellular localization of GmPIP1;6, the GmPIP1;6
was fused with green fluorescent protein (GFP) and driven
by a constitutive Cauliflower mosaic virus 35S promoter
(CaMV 35S). The final construct GmPIP1;6::GFP was tran-
siently co-expressed in onion epidermal cells and compared
with the mCherry plasma membrane marker (Figure 1).
GFP fluorescence of GmPIP1;6 was confined to the plasma
membrane and co-localized with the RFP fluorescence of



Figure 1 Subcellular localization of GmPIP1;6. (A) Green fluorescence image of an epidermal cell expressing the pCAMBIA1302 that sGFP was
under the control of the CaMV 35S promoter. (B) Bright-field light image of an epidermal cell expressing the pCAMBIA1302. (C) Green
fluorescence image of an epidermal cell expressing the GmPIP1;6:sGFP fusion protein. (D) Red fluorescence image of an epidermal cell expressing
the CD3-1007 marker. (E) Merged fluorescence image of an epidermal cell expressing the GmPIP1;6:sGFP fusion protein and CD3-1007 marker.
(F) Bright-field light image of an epidermal cell expressing the GmPIP1;6:sGFP fusion protein and CD3-1007 marker. Bars = 50 μm.
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mCherry. When the control construct with GFP alone was
transiently expressed in onion epidermal cells, the GFP
fluorescence was observed in the nucleus and cytoplasm
(Figure 1).

Expression patterns of GmPIP1;6
To analyze GmPIP1;6 gene expression in different soybean
tissues, we measured the expression of GmPIP1;6 in root,
stem, unifoliolate leaf, trifoliolate leaf, flower and pod by
quantitative RT-PCR. This showed that GmPIP1;6 was
highly expressed in root, stem, flower and pod whereas it
was lowly expressed in leaves (Figure 2A). To investigate
the response of GmPIP1;6 to salt stress, we determined ex-
pression of GmPIP1;6 in root and leaf after 100 mM NaCl
treatment for 6 hours, 12 hours, 1 day, 3 days and 5 days.
The expression of GmPIP1;6 was suppressed by NaCl treat-
ment in 6 and 12 hours in both roots and leaves. However,
expression was induced in the roots after 1 day and further
increased at 3 days and 5 days of NaCl treatment
(Figure 2B). A similar response was observed in the leaves
although the absolute expression of GmPIP1;6 was much
lower than that of the roots (Additional file 1: Figure S2).



Figure 2 Expression pattern of GmPIP1;6 under normal and
NaCl treatments. (A) Relative expression levels of GmPIP1;6 in
unifoliate leaf (UL), trifoliolate leaf (TL), stem (S), flower (F), pod (P)
and root (R). Soybean seedlings were grown in nutrient solution.
Total RNA was extracted from different tissues for qRT-PCR. (B)
Ten-day-old soybean seedlings were treated with or without 100
mM NaCl in nutrient solution. RNA was extracted from the leaves of
these seedlings at 6 hours, 12 hours, 1 day, 3 days, 5 days after
treatment. All data are means of four biological replicates with error
bars indicating SD. Expression level of treated plants was relative to
control plants at each time point.
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Generation of transgenic soybean overexpressing
GmPIP1;6
To characterize the role of GmPIP1;6 in salt stress, the
cDNA of GmPIP1;6 driven by a modified CaMV 35S
promoter was introduced into soybean via soybean coty-
ledonary node transformation system (Figure 3A). Posi-
tive transgenic lines were selected by spraying the
herbicide Liberty (Additional file 1: Figure S3). A total of
11 independent lines which overexpressed GmPIP1;6 were
generated and confirmed by semi-qRT PCR (Figure 3B).
Two transgenic lines were selected and measured by qRT-
PCR. These two lines, which showed more than 100-fold
higher expression levels of GmPIP1;6 than WT control in
leaves (Figure 3C), were selected for further experiments.

Overexpression of GmPIP1;6 enhances salt tolerance in
soybean
The growth of WT and GmPIP1;6-Oe transgenic soy-
bean plants were similar when grown in aerated hydro-
ponic solution (Figure 4A, Table 1). For salt tolerance
analysis, 10-day-old WT and GmPIP1;6-Oe transgenic
seedlings were treated with 100 mM NaCl for 7 days.
Salt treatment suppressed the growth of WT and
GmPIP1;6-Oe transgenic soybean plants, all of which ex-
hibited a decreased plant length and fresh weight in both
leaves and roots (Figure 4A, Table 1). However, the
leaves of WT plants turned yellow after treatment for 7
days while the leaves of transgenic plants were still green
(Figure 4A). The relative measure of leaf greenness was
carried out with a portable chlorophyll meter. Soil-plant
analyser development (SPAD) values of unifoliolate leaf
in GmPIP1;6-Oe were significantly higher than WT
under salt stressed condition (Figure 4B). Moreover, the
shoot length and fresh weight of GmPIP1;6-Oe trans-
genic soybean were significantly higher than that of WT
plants under salt stressed conditions (Table 1). These re-
sults indicated that GmPIP1;6-Oe plants were more tol-
erant to salt stress than WT plants.

Overexpression of GmPIP1;6 increased photosynthesis
and root water conductance in soybean under salt stress
conditions
The impact of GmPIP1;6 overexpression on net assimila-
tion (AN) under saturating light, stomata conductance
(gs) and transpiration rate (Tr) were measured using an
infrared gas analyser (LI-6400) under normal and salt
treatment conditions. Diurnal photosynthesis of soybean
was measured every 2 hours in a light period from 8:00
AM to 4:00 PM. As expected, the AN, gs and Tr showed
diurnal changes and peaked at about 2:00 PM in both
WT and GmPIP1;6-Oe plants (Figure 5A-C). Under nor-
mal growth conditions, GmPIP1;6-Oe plants showed sig-
nificantly higher AN, gs and Tr than that of WT at all the
time points measured (Figure 6A-C). We then took the
values of AN, gs and Tr at 2:00 PM to compare WT and
GmPIP1;6-Oe plants. Under normal growth conditions,
AN, gs and Tr was significantly increased in GmPIP1;6-
Oe plants than that of WT plants (Table 2). Interest-
ingly, the AN, gs and Tr was more than 2-fold higher in
GmPIP1;6-Oe1 plants compared with that of WT under
salt treatment. In the other transgenic line, GmPIP1;6-
Oe2, the AN, gs and Tr were 1.71, 1.75 and 2.1-fold
higher than that of WT (Table 2). These results indi-
cated that overexpression of GmPIP1;6 increased photo-
synthetic activity and stomatal conductance, especially
under saline conditions.



Figure 3 Construction of GmPIP1;6 overexpression transgenic soybean. (A) Schematic illustration of T-DNA sequence of GmPIP1;6 overexpression
vector. (B) Reverse transcript PCR analysis of GmPIP1;6 overexpression transgenic lines. 1 to 11 represented 11 independent T1 generation GmPIP1;6
overexpression lines. WT, wild type. (C) qRT-PCR analysis of two representative GmPIP1;6 overexpression transgenic lines. RNA was extracted from the leaves
of fourteen-day-old seedlings. All data are means of four biological replicates with error bars indicating SD. Expression of GmACTIN was used as the
internal control.
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Under normal conditions, the substomatal concentra-
tion of CO2 (Ci) of GmPIP1;6-Oe was lower than that of
WT though no significant difference was observed. In
contrast, the Ci of GmPIP1;6-Oe was significantly lower
than that of WT under salt treatment (Table 2,
Figure 6D). This is in accordance with the higher rate of
net photosynthesis of GmPIP1;6-Oe compared to WT
plants under saline conditions. Instantaneous water use
efficiency (IWUE = A/T) was significantly increased in
GmPIP1;6-Oe plants under both normal and salt stress
conditions compared with WT (Table 2). Changing
stomata density and/or pore area will influence the gs
and Tr. Examination of the abaxial leaf surface revealed
a significantly wider stomatal aperture in GmPIP1;6-Oe
plants under both normal and salt stress conditions
while the stomata density was not changed (Table 2,
Additional file 1: Figure S4A). As a result, the water loss
rate was increased in the transgenic plants compared
with WT plants (Additional file 1: Figure S4B).
We also measured root hydraulic conductance (Lo), nor-

malized to root dry weight, in GmPIP1;6-Oe and WT
plants. Interestingly the Lo was similar between GmPIP1;6-
Oe and WT plants irrigated with nutrient solution. How-
ever when irrigated with nutrient solution containing 50
mM NaCl, Lo of WT plants decreased almost 50% while Lo
of GmPIP1;6-Oe plants remained unchanged (Figure 5).

Overexpression of GmPIP1;6 affects Na uptake and
exclusion of transgenic plants under salt stress
The sodium concentration of plants was analyzed under
normal and salt stress conditions. Sodium (Na+) concen-
tration was similar between WT and GmPIP1;6-Oe
plants in roots and leaves under normal conditions
(Figure 7A, B). Salt treatment increased Na+ concentra-
tion in the roots and leaves of both WT and GmPIP1;
6-Oe plants. However, the Na+ concentration was sig-
nificantly lower in the leaves of GmPIP1;6-Oe plants
than WT plants under salt stress (Figure 7B, Additional
file 1: Figure S5). We examined relative Na+ exclusion of
WT and GmPIP1;6-Oe plants after salt treatment reveal-
ing that the relative exclusion of Na+ from the shoot
of GmPIP1;6-Oe plants was higher relative to WT
(Figure 7C). Moreover, salt treatment induced the ex-
pression of GmNHX1 in the leaves and roots of WT but
not in GmPIP1;6-Oe plants (Figure 8).

Overexpression of GmPIP1;6 increased yields of soybean
in the field
Four independent GmPIP1;6-Oe lines, where two of
these lines were the same as the ones used in the physi-
ology experiments, were grown in field conditions for an
entire growing season in two continuous years. Each
year, the transgenic plants were compared with WT and
null transgenic plants, which were segregated from het-
erozygous transgenic plants. Interestingly, GmPIP1;6-Oe
plants have a significantly higher seed weight per plant
and per 100 seeds than WT (Table 3). Other yield pa-
rameters were similar between WT and GmPIP1;6-Oe
plants (Table 3, Additional file 1: Figure S6A). A detailed
analysis showed that the increased seed weight of
GmPIP1;6-Oe plants was caused by large seed size
(Additional file 1: Figure S6B, Table 3).

Discussion
Recently, 66 AQP genes were identified in soybean by a
genome wide analysis [30]. The GmPIP subfamily con-
tained 8 PIP1 genes and 14 PIP2 genes, all of which were
predicted to localize on the plasma membrane. It is
found that PIP2 aquaporins when expressed in Xenopus
oocytes have high water permeability while PIP1 aqua-
porins do not. However, PIP1 aquaporins can work co-
operatively with PIP2s in targeting to the plasma
membrane and in water permeation as heterotetramers
[20-27]. This is accordance with the fact that GmPIP1;6
protein fused with GFP localized on the plasma mem-
brane (Figure 1).
GmPIP1;6 is the ortholog of AtPIP1;2, NtAQP1,

HvPIP1;6/1;1 and TaAQP8 in Arabidopsis, tobacco, barley



Figure 4 Salt stress tolerance of GmPIP1;6 overexpression
transgenic lines. Ten-day-old WT and GmPIP1;6-Oe transgenic soybean
plants were treated with or without 100 mM NaCl in nutrient solution for
7 days. (A) Photographs of WT and GmPIP1;6-Oe transgenic soybean
plants with or without 100 mM NaCl treatment for 7 days. Bar = 3.5 cm.
(B) SPAD of unifoliolate leaf in WT and GmPIP1;6-Oe with or without 100
mM NaCl treatment for 7 days. All data are means of four biological
replicates with error bars indicating SD.

Table 1 Plant length and biomass of the WT and
transgenic plants under normal and salt stress conditions

Genotype Plant length (cm) Plant fresh weight (g)

Shoot Root Shoot Root

Normal condition

WT 22.2 ± 1.5ab 38.0 ± 2.1a 3.10 ± 0.13a 1.15 ± 0.09a

Oe1 22.8 ± 0.8a 38.2 ± 2.5a 3.08 ± 0.08a 1.16 ± 0.11a

Oe2 22.7 ± 0.5a 37.7 ± 2.2a 3.10 ± 0.15a 1.15 ± 0.06a

Salt stress condition

WT 15.7 ± 1.0d 33.0 ± 4.0ab 1.72 ± 0.18c 0.67 ± 0.10b

Oe1 19.0 ± 1.3bc 28.8 ± 3.7b 2.39 ± 0.17b 0.76 ± 0.10b

Oe2 18.5 ± 1.6c 29.0 ± 3.1b 2.28 ± 0.07b 0.71 ± 0.07b

Ten-day-old WT and GmPIP1;6-Oe transgenic soybean plants were treated with
or without 100 mM NaCl for 7 days. Length and fresh weight of shoot and
root of WT and transgenic plants were measured. Data are given as means ±
SD (n = 6). Different letters indicate significant differences (LSD test, P <0.05).
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and wheat (Additional file 1: Figure S1). AtPIP1;2 and
NtAQP1 play a key role in regulating root hydraulic con-
ductance (Lo) in Arabidopsis and tobacco [17,43,44], re-
spectively. In situ PCR showed that GmPIP1;6 was highly
expressed in the stellar region of the root [42], which is
similar as NtAQP1. Shoot topping rapidly decreased root
hydraulic conductance (Lo) by 50% to 60%, which is corre-
lated with the reduced expression of GmPIP1;6 in roots of
soybean. Therefore, GmPIP1;6 was suggested to control the
Lo as AtPIP1;2 and NtAQP1.
Water stress caused by drought, salt or cold has a

complex effect on the expression of AQP genes [36]. In
summary, the expression of AQP genes could be divided
into two stages. In the early stress response, the plant
usually suppresses the expression of PIP genes, which is
hypothesised to avoid water flow from the root to the
soil when the soil water potential decreases [45,46].
After a few days of acclimation, the expression of PIP
genes recovers or even increases and is correlated with
increased hydraulic conductance [47-49]. The expression
of GmPIP1;6 in both roots and leaves showed this two
stage response under salt stress (Figure 2B, Additional
file 1: Figure S2), indicating GmPIP1;6 may be involved
in the salt stress acclimation of soybean.
Overexpression of several PIP1 genes increased the hy-

draulic conductance and salt tolerance of the transgenic
plants, such as NtAQP1, OsPIP1;1, TaAQP8 and Musa-
PIP1;2 [17,37,40,50]. Here we show that GmPIP1;6 con-
ferred salt tolerance, but also under normal conditions
the overexpression resulted in higher growth and greater
yield under field conditions compared to WT plants
(Figure 4A, Table 3). However, the mechanism of how
these PIP1 genes can improve plant growth and salt tol-
erance is largely unknown, though a high K+/Na+ ratio
was mentioned with overexpression of TaAQP8 [37].
It is highly unlikely that GmPIP1;6 can transport Na+,

therefore salt tolerance of transgenic GmPIP1;6 plants is
more likely to occur through indirect mechanisms: First,
improvement in water uptake by roots and leaf cell hy-
dration, could improve energy capture and conversion
by leaves. Greater energy availability in turn could im-
prove Na+ exclusion by roots and improve tissue Na+

compartmentalization [1]. We compared the root Lo of
WT and GmPIP1;6-Oe plants under normal and salt
stressed conditions (Figure 7). As expected, NaCl treat-
ment decreased Lo by 50% in WT plants. In contrast,
GmPIP1;6-Oe plants maintained Lo under salt stress
conditions. Therefore, GmPIP1;6-Oe plants may have a
higher water uptake activity than WT plants under



Figure 5 Daily net assimilation (AN of A), stomata conductance (gs of B) and transpiration rate (Tr of C), and substomatal concentration
of CO2 (Ci of D) of the WT and GmPIP1;6 overexpression plants under normal and salt stress conditions. Ten-day-old WT and GmPIP1;6-Oe
transgenic soybean plants were treated with or without 100 mM NaCl for 3 days. AN, gs, Tr and Ci were measured by LI-6400 every 2 hours from 8:00 AM to
4:00 PM. All data are means of four biological replicates with error bars indicating SD.

Figure 6 Root hydraulic conductance (Lo) of WT and GmPIP1;6
overexpression plants after salt irrigation. Five-week-old WT and
GmPIP1;6-Oe transgenic soybean plants were grown in pot treated
with normal irrigation and 50 mM NaCl in a controlled greenhouse.
Measurements were made between 10:00 AM to 12:00 AM. Lo
normalized to root dry weight. All data are means of four biological
replicates with error bars indicating SD. Asterisks indicate a significant
difference between the WT and the two transgenic lines (*P < 0.05).
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saline conditions. Secondly, Na+ is transported to shoots
in the transpiration stream through the xylem, but it can
return to root via the phloem [43,51-53]. Export of Na+

from leaves in the phloem could conceivably help to
maintain low salt concentration in the leaves and may
be enhanced by greater water permeability in phloem
cells. Also we show that net assimilation and gas ex-
change are enhanced in the GmPIP1;6-Oe plants, and es-
pecially so under saline conditions compared to WT.
This would potentially translate to a higher capacity to
exclude Na+ via energy demanding salt exclusion mecha-
nisms in the roots and the leaves. Thirdly, we measured
the expression of GmNHX1 [54] to analyze the effect of
Na+ compartmentalization in the vacuole (Figure 8). Salt
treatment induced the expression of GmNHX1 in the
leaves and roots of WT but not in GmPIP1;6-Oe plants.
This is accordance with the lower Na+ concentration
of GmPIP1;6-Oe plants and indicated that vacuole
compartmentalization of GmPIP1;6-Oe plants was not
necessarily enhanced.
Another possibility that may account for reduced Na+

transport to the shoot in the over expressing plants could be
that more water flow occurs radially across roots via the
cell-to-cell (membrane) pathway, as opposed to the apoplast



Table 2 Photosynthetic and root hydraulic characteristics of WT and transgenic plants under normal and salt stress
conditions

Variable Normal condition Salt stress condition

WT Oe1 Oe2 WT Oe1 Oe2

gs (mol water m−2 s−1) 0.14 ± 0.01b 0.18 ± 0.01a 0.17 ± 0.02a 0.04 ± 0.01d 0.09 ± 0.01c 0.07 ± 0.01c

Tr (mmol water m−2 s−1) 6.02 ± 0.18b 6.93 ± 0.52a 6.76 ± 0.34a 1.83 ± 0.46e 3.99 ± 0.42c 3.12 ± 0.53d

AN (μmol CO2 m
−2 s−1) 9.73 ± 1.26 b 13.29 ± 0.24a 12.17 ± 1.12a 3.31 ± 1.41d 8.26 ± 0.56bc 7.21 ± 1.74c

Ci (μmol CO2 mol−1) 295 ± 13a 271 ± 9b 278 ± 17b 279 ± 25d 243 ± 7c 236 ± 17c

Stomata pore aperture (μm) 3.48 ± 0.27b 3.88 ± 0.42a 3.86 ± 0.39a 1.93 ± 0.14d 3.00 ± 0.25c 2.96 ± 0.19c

Stomata density (0.1 mm2) 19 ± 3a 19 ± 3a 19 ± 4a 19 ± 3a 20 ± 4a 19 ± 3a

IWUE (mmol CO2 mmol−1 water) 1.61 ± 0.16c 1.92 ± 0.15b 1.88 ± 0.24b 1.73 ± 0.35bc 2.17 ± 0.09a 2.29 ± 0.22a

Ten-day-old WT and GmPIP1;6-Oe transgenic soybean plants were treated with or without 100 mM NaCl for 3 days. Data are given as means ± SD (n = 4). Different
letters indicate significant differences (LSD test, P <0.05).
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pathway. This would occur because of the higher activity of
GmPIP1;6 in root membranes under salinity stress demon-
strated by the higher root Lo compared to WT. A higher
proportion of water flow via the membrane pathway in roots
would confer a greater degree of ion selectivity relative to
flow in the apoplast pathway. Altogether, we clarified that
overexpression of GmPIP1;6 increased soybean salt toler-
ance by maintaining water uptake ability and Na+ exclusion.
In addition to function as a water channel, AtPIP1;2

and NtAQP1 may function to facilitate CO2 transport
and enhance photosynthesis by increasing the mesophyll
conductance to CO2 diffusion [55-59]. Overexpression
of NtAQP1 in tobacco and tomato increased the AN,
which resulted in increased WUE. The overexpression of
NtAQP1 produced higher dry biomass and yield under
normal irrigation and salt stressed conditions [17].
GmPIP1;6-Oe plants also exhibited higher AN, gs and
IWUE than WT under both normal and saline condi-
tions (Figure 6, Table 2). However, the growth of
GmPIP1;6-Oe plants was only enhanced under saline
conditions compared to WT plants (Figure 4A, Table 1).
Whether GmPIP1;6 has a similar function as NtAQP1 to
facilitate CO2 diffusion across leaf cell membranes re-
quires further research.
Importantly, GmPIP1;6-Oe plants showed higher yield in

the field than WT because the seed weight and size of
GmPIP1;6-Oe were increased (Table 3, Additional file 1:
Figure S6). This may be reflecting the higher net assimila-
tion, but also may indicate sink limitation of seed loading
that could be enhanced by greater water permeability in the
seed loading process [60]. In addition to being highly
expressed in roots and stems, the transcripts of GmPIP1;6-
Oe were abundant in flower and pod, which supports a role
of GmPIP1;6-Oe in seed loading of assimilates via enhanced
water permeability.

Conclusions
In this study, the function of GmPIP1;6 was analyzed by
constitutive expressing in the soybean plants. The
expression of GmPIP1;6 was influenced by salt stress.
Overexpression of GmPIP1;6 improved salt tolerance of
transgenic plants by increasing water transport, photo-
synthesis and Na+ exclusion. Moreover, the yield of
GmPIP1;6 overexpression plants was improved in the
field indicating the potential of GmPIP1;6 in genetic en-
gineering of soybean.

Methods
Plant materials, growth conditions and treatments
Soybean cultivar Williams 82 was used for all physio-
logical experiments and soybean transformation. Seeds
were germinated in nursery pots with sand. Five days
after germination, the seedlings grown uniformly were
transferred into pots with nutrient solution or soil. 1/2
Hoagland solution was used for hydroponic culture con-
taining 2.5 mM KNO3, 2.5 mM Ca(NO3)2, 0.5 mM
KH2PO4, 0.25 mM K2SO4, 1 mM MgSO4, 0.1 mM Fe-
EDTA(Na), 4.57 μM MnCl2, 3.8 μM ZnSO4, 0.09 μM
(NH4)6Mo7O24, 23 μM H3BO3, 1.57 μM CuSO4. Plants
were grown in green house under 12 h light/12 h dark
photoperiod with light intensity of 1000 μmol m−2 sec−1

and day/night temperatures of 30/22°C. Humidity of the
growth room was controlled at approximately 30%.
Ten-day-old seedlings were transferred into nutrient

solution with or without 100 mM NaCl. The nutrient
solution was changed every two days. In the soil experi-
ments, plants were irrigated nutrient solution every
three days.

Subcellular localization of GmPIP1;6
Full length cDNA of GmPIP1;6 without stop code was
amplified via PCR using the primers in Supplementary
Additional file 2: Table S1. The PCR product was cloned
into vector pCAMBIA1302 under the control of the
CaMV 35S promoter. The resulting construct (pCAM-
BIA1302:GmPIP1;6) placed GmPIP1;6 in-frame, up-
stream of the sGFP. Plasmids DNA of pCAMBIA1302:
GmPIP1;6 and CD3-1007 (AtPIP2A::mCherry fusion)



Figure 7 Ion concentration in WT and GmPIP1;6 overexpression
plants in hydroponics condition. (A) and (B) The content of Na+

in roots and leaves. Ten-day-old WT and GmPIP1;6-Oe transgenic
soybean plants were treated with or without 100 mM NaCl for 7
days. The roots or leaves of these seedlings were sampled for
measurement. (C) Relative Na exclusion. Data are means of four
biological replicates with error bars indicating SD. Asterisks indicate
a significant difference between the WT and the transgenic lines
(**P < 0.01). DW, dry weight.
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was mix with 50 μl gold particles and bombarded into
onion inner epidermal cells using the Biolistic PDS-1000/
He particle delivery system (BIO-RAD). Fluorescence was
observed by confocal laser scanning microscopy (LSM700;
Carl Zeiss) after incubation at 25°C for 16-18 h on MS
medium in dark.

Construction of transgenic plants
Full-length cDNA of GmPIP1;6 was amplified by PCR
with cDNA of Williams 82 and ligated into pMD-18 T
vector (Takara). After sequencing, the correct GmPIP1;6
was digested from pMD-18 T vector using BamHI and
XbaI restriction enzymes. GmPIP1;6 was then cloned
into binary plasmid pTF101-35S which was modified by
introducing CaMV 35S promoter and nos terminator
into pTF101. The vector was transformed into Williams
82 via Agrobacterium tumefaciens media soybean cotyle-
don node transformation system as described [61].

RNA extraction
Total RNA was isolated from tissues of soybean cultivar
Williams 82 using TRIzol reagent (Invitrogen, Carlsbad,
CA) according the manufacturer’s instruction. 50 mg soy-
bean tissues with three bilogical replicate were quickly har-
vested, frozen in liquid nitrogen and stored at -80°C.
Contaminating DNA was removed with DNaseI treatment
for 20 min at 25°C (Takara), and RNA was stored at -80°C.
Total RNA was quantified with nanodrop.

Semi-quantitative RT-PCR and quantitative real-time PCR
First-strand cDNAs were synthesized from total RNA
using SuperScript II reverse transcriptase (Invitrogen).
Semi-quantitative RT-PCR was performed using a
pair of gene-specific primers. The housekeeping gene
GmACTIN was used as an internal control. Quantitative
real-time PCR was performed using a SYBR Green I on
a Light Cycler 480 II machine (Roche Diagnostics), ac-
cording to the manufacturer’s instructions. The amplifi-
cation program for SYBR Green I was performed at
94°C for 10 sec, 58°C for 10 sec and 72°C for 10 sec.
Triplicate quantitative assays were performed on each
cDNA sample. The relative level of expression was cal-
culated using the formula 2 -△(△cp). All primers used for
RT-PCR are given in Supplementary Additional file 2:
Table S1.

Gas-exchange measurements
Homozygous lines were selected from the T2 generation of
transgenic GmPIP1;6 overexpression plants and used for
the physiology experiment. AN, gs, Tr and Ci were recorded
in GmPIP1;6 overexpression and control plants in green
house on fully expanded leaves, using an Li-6400 portable
gas-exchange system (LI-COR). All measurements were
conducted between 8:00 AM and 4:00 PM. Photosynthesis



Figure 8 Expression analysis of soybean salt response gene. (A) and (B) The expression of GmNHX1 and GmSOS1 in leaves and root under
normal or salt stress conditions. RNA was extracted from leaves and roots of 10-day-old WT and GmPIP1;6 overexpression plants treated with or
without 100 mM NaCl for 3 days. All data are means of four biological replicates with error bars indicating SD. Expression of GmACTIN was used
as the internal control.
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was induced in saturating light (1000 μmol m−2 s−1) with
400 μmol mol−1 CO2 surrounding the leaf. The leaf-to-air
VPD was kept at around 2 to 4 kPa and leaf temperature
was approximately 30°C (ambient temperature) during all
measurements. For each treatment, there were four bio-
logical replicates.
Table 3 Agronomic characteristics of WT, null transgenic and

Genotype WT Negative

Plant height (cm) 83 ± 3a 87 ± 8a

Branch number 4.6 ± 1.1a 5.6 ± 2.1a 4

Node number/plant 24.6 ± 1.1a 24.7 ± 1.1a 23

Pod number/plant 175 ± 24ab 197 ± 40ab 19

Seed number/plant 425 ± 62a 423 ± 78a 4

Seed weight (g)/plant 49.6 ± 12.1b 47.7 ± 14.2b 59

100 seed weight (g) 14.0 ± 0.5b 13.6 ± 1.6b 16

10 seed length (cm) 7.20 ± 0.07c 7.14 ± 0.11c 8.0

10 seed width (cm) 6.28 ± 0.13c 6.36 ± 0.11c 7.2

Data are given as means ± SD (n = 6). Different letters indicate significant difference
Stomata aperture and density
Epidermis of soybean abaxial leaf was separation by for-
ceps. All samples were collected around 2:00 PM (at
peak transpiration). Counting and photographing were
performed with a bright-field microscope (80i; Nikon)
mounted with a camera. Stomata images were later
overexpression transgenic soybean plants in field

Oe1 Oe2 Oe3 Oe4

83 ± 8a 89 ± 10a 83 ± 15a 87 ± 6a

.7 ± 1.4a 4.8 ± 2.1a 5.4 ± 2.3a 5.0 ± 0.9a

.7 ± 2.7a 24.3 ± 2.0a 23.2 ± 1.6a 22.7 ± 2.4a

5 ± 18ab 174 ± 28ab 200 ± 56a 166 ± 34ab

35 ± 45a 417 ± 69a 441 ± 175a 406 ± 93a

.5 ± 6.5a 56.7 ± 8.2a 58.5 ± 23.0a 53.7 ± 12.4a

.4 ± 0.8a 17.4 ± 1.8a 16.8 ± 1.7a 16.7 ± 1.0a

2 ± 0.08a 7.72 ± 0.08b 7.71 ± 0.08b 7.80 ± 0.09b

6 ± 0.05a 6.90 ± 0.07b 7.02 ± 0.08b 6.95 ± 0.10b

s (LSD test, P <0.05).
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analyzed to count the number per 0.1 mm2 area and de-
termine aperture using the microscope software (NIS el-
ements) measurement tool. A microscopic ruler was
used for the size calibration.

Determining Na+ concentration
Leaves and root from 17-day old transgenic lines and
WT were sampled and dried at 80°C for 3 days. 50 mg
of the material was weighed and dissolved with 3 ml of
nitric acid and 2 ml of H2O2 (30%). The digested sam-
ples were diluted to a total volume of 50 ml with ultra-
pure water and transferred into new tubes before
analysis by using an inductively coupled plasma-mass
spectrometer (ICP-MS, ELAN DRC-e).
To analyze the relative Na+ exclusion, Ten-day-old WT

and GmPIP1;6-Oe transgenic soybean plants in hydropon-
ics were treated with 100 mM NaCl for 7 days. Soybean
plants after treatment were transferred into narrow neck
flask individually, which filled with same volume of normal
nutrient solution, and cultured for 24 hours. Na+ concen-
tration of solution was measured by ICP-MS described
above. The relative Na+ exclusion was calculated by the
formula: relative Na+ exclusion = (Na+ concentration of so-
lution ×Volume of solution)/(Na+ concentration of shoot ×
DW of shoot).

Root hydraulic conductance
Root hydraulic conductance were measured with a hy-
draulic conductance flow meter (HCFM) (Dynamax,
Houston, TX, USA) as described in Vandeleur [23]. 5-
week-old potted soybean plants grown in greenhouse. 1
day before root hydraulic conductance were measured,
control plants were irrigated with normal nutrient solu-
tion and treatment plants were irrigated with nutrient
solution containing 50 mM NaCl. Measurements were
made between 10:00 AM to 12:00 AM. Hydraulic con-
ductance (Lo) was normalized by dividing total root dry
weight. The soil was washed from the roots, and baked
at 80°C for 3 days.

Additional files

Additional file 1: Figure S1. Phylogenetic analysis of GmPIP1s and
other AQPs by MEGA 5.04. Figure S2. Expression pattern of GmPIP1;6
under NaCl treatment in leaves relative to control.. Ten-day-old soybean
seedlings were treated with or without 100 mM NaCl in nutrient solution.
RNA was extracted from the leaves of these seedlings at 6 hours, 12
hours, 1 day, 3 days, 5 days after treatment. All data are means of four
biological replicates with error bars indicating SD. Expression level of
treated plants was relative to control plants at each time point.
Figure S3. Detection of transgenic soybean with herbicide Liberty. One
half of the leaf was painted with 135 mg/L LibertyW, the bar-containing
positive transgenic soybean leaves were green and the negative ones
were yellow and wilted. Treated leaves were labeled with marker pen
which can be seen in the images. Figure S4. Measurement of stomata
aperture water loss rate. Ten-day-old WT and GmPIP1;6 overexpression
plants in nutrient solution were treated with or without 100 mM NaCl for
3 days. Leaves were sampled at 2:00 PM to observe the abaxial leaf
surface with microscope and measured stomata aperture. Bar = 100 nm.
Figure S5. Distribution of intracellular Na+ in WT and transgenic soybean
plants. Ten-day-old WT and GmPIP1;6 overexpression plants in nutrient
solution were treated with or without 100 mM NaCl for 2 days. Samples
of leaves were sliced and stained with CoroNa-Green at 2:00 PM and
observed with a confocal microscope. Bar = 100 μm. Figure S6.
Phenotypic characterization of GmPIP1;6 overexpressing soybean seeds.
Mature dried seeds from WT and GmPIP1;6-Oe transgenic soybean plants
were recorded. Bar = 3 cm.

Additional file 2: Table S1. Primers used in this study.
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